3.651 \(\int \frac{x (a+b x^2)^2}{(c+d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=73 \[ -\frac{2 b \sqrt{c+d x^2} (b c-a d)}{d^3}-\frac{(b c-a d)^2}{d^3 \sqrt{c+d x^2}}+\frac{b^2 \left (c+d x^2\right )^{3/2}}{3 d^3} \]

[Out]

-((b*c - a*d)^2/(d^3*Sqrt[c + d*x^2])) - (2*b*(b*c - a*d)*Sqrt[c + d*x^2])/d^3 + (b^2*(c + d*x^2)^(3/2))/(3*d^
3)

________________________________________________________________________________________

Rubi [A]  time = 0.0556265, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {444, 43} \[ -\frac{2 b \sqrt{c+d x^2} (b c-a d)}{d^3}-\frac{(b c-a d)^2}{d^3 \sqrt{c+d x^2}}+\frac{b^2 \left (c+d x^2\right )^{3/2}}{3 d^3} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*x^2)^2)/(c + d*x^2)^(3/2),x]

[Out]

-((b*c - a*d)^2/(d^3*Sqrt[c + d*x^2])) - (2*b*(b*c - a*d)*Sqrt[c + d*x^2])/d^3 + (b^2*(c + d*x^2)^(3/2))/(3*d^
3)

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{x \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{3/2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(a+b x)^2}{(c+d x)^{3/2}} \, dx,x,x^2\right )\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{(-b c+a d)^2}{d^2 (c+d x)^{3/2}}-\frac{2 b (b c-a d)}{d^2 \sqrt{c+d x}}+\frac{b^2 \sqrt{c+d x}}{d^2}\right ) \, dx,x,x^2\right )\\ &=-\frac{(b c-a d)^2}{d^3 \sqrt{c+d x^2}}-\frac{2 b (b c-a d) \sqrt{c+d x^2}}{d^3}+\frac{b^2 \left (c+d x^2\right )^{3/2}}{3 d^3}\\ \end{align*}

Mathematica [A]  time = 0.0382335, size = 65, normalized size = 0.89 \[ \frac{-3 a^2 d^2+6 a b d \left (2 c+d x^2\right )+b^2 \left (-8 c^2-4 c d x^2+d^2 x^4\right )}{3 d^3 \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*x^2)^2)/(c + d*x^2)^(3/2),x]

[Out]

(-3*a^2*d^2 + 6*a*b*d*(2*c + d*x^2) + b^2*(-8*c^2 - 4*c*d*x^2 + d^2*x^4))/(3*d^3*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 69, normalized size = 1. \begin{align*} -{\frac{-{b}^{2}{d}^{2}{x}^{4}-6\,ab{d}^{2}{x}^{2}+4\,{b}^{2}cd{x}^{2}+3\,{a}^{2}{d}^{2}-12\,cabd+8\,{b}^{2}{c}^{2}}{3\,{d}^{3}}{\frac{1}{\sqrt{d{x}^{2}+c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b*x^2+a)^2/(d*x^2+c)^(3/2),x)

[Out]

-1/3*(-b^2*d^2*x^4-6*a*b*d^2*x^2+4*b^2*c*d*x^2+3*a^2*d^2-12*a*b*c*d+8*b^2*c^2)/(d*x^2+c)^(1/2)/d^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)^2/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.35808, size = 165, normalized size = 2.26 \begin{align*} \frac{{\left (b^{2} d^{2} x^{4} - 8 \, b^{2} c^{2} + 12 \, a b c d - 3 \, a^{2} d^{2} - 2 \,{\left (2 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2}\right )} \sqrt{d x^{2} + c}}{3 \,{\left (d^{4} x^{2} + c d^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)^2/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

1/3*(b^2*d^2*x^4 - 8*b^2*c^2 + 12*a*b*c*d - 3*a^2*d^2 - 2*(2*b^2*c*d - 3*a*b*d^2)*x^2)*sqrt(d*x^2 + c)/(d^4*x^
2 + c*d^3)

________________________________________________________________________________________

Sympy [A]  time = 1.01098, size = 155, normalized size = 2.12 \begin{align*} \begin{cases} - \frac{a^{2}}{d \sqrt{c + d x^{2}}} + \frac{4 a b c}{d^{2} \sqrt{c + d x^{2}}} + \frac{2 a b x^{2}}{d \sqrt{c + d x^{2}}} - \frac{8 b^{2} c^{2}}{3 d^{3} \sqrt{c + d x^{2}}} - \frac{4 b^{2} c x^{2}}{3 d^{2} \sqrt{c + d x^{2}}} + \frac{b^{2} x^{4}}{3 d \sqrt{c + d x^{2}}} & \text{for}\: d \neq 0 \\\frac{\frac{a^{2} x^{2}}{2} + \frac{a b x^{4}}{2} + \frac{b^{2} x^{6}}{6}}{c^{\frac{3}{2}}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x**2+a)**2/(d*x**2+c)**(3/2),x)

[Out]

Piecewise((-a**2/(d*sqrt(c + d*x**2)) + 4*a*b*c/(d**2*sqrt(c + d*x**2)) + 2*a*b*x**2/(d*sqrt(c + d*x**2)) - 8*
b**2*c**2/(3*d**3*sqrt(c + d*x**2)) - 4*b**2*c*x**2/(3*d**2*sqrt(c + d*x**2)) + b**2*x**4/(3*d*sqrt(c + d*x**2
)), Ne(d, 0)), ((a**2*x**2/2 + a*b*x**4/2 + b**2*x**6/6)/c**(3/2), True))

________________________________________________________________________________________

Giac [A]  time = 1.13702, size = 108, normalized size = 1.48 \begin{align*} \frac{{\left (d x^{2} + c\right )}^{\frac{3}{2}} b^{2} - 6 \, \sqrt{d x^{2} + c} b^{2} c + 6 \, \sqrt{d x^{2} + c} a b d - \frac{3 \,{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )}}{\sqrt{d x^{2} + c}}}{3 \, d^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)^2/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

1/3*((d*x^2 + c)^(3/2)*b^2 - 6*sqrt(d*x^2 + c)*b^2*c + 6*sqrt(d*x^2 + c)*a*b*d - 3*(b^2*c^2 - 2*a*b*c*d + a^2*
d^2)/sqrt(d*x^2 + c))/d^3